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Commentary

Head motion: the dirty little secret of neuroimaging  
in psychiatry

Carolina Makowski, BSc; Martin Lepage, PhD; Alan C. Evans, PhD

Introduction

Neuroimaging studies of psychiatric disorders often face the 
dilemma of how to handle patient head motion — a dilemma 
we are reluctant to confront. On one hand, assembling a suf-
ficiently large cohort for meaningful study is a painstaking 
process, and there is a natural desire to use all the data col-
lected. On the other hand, many patient populations exhibit 
significantly increased motion in the scanner compared with 
healthy controls,1,2 suggesting that more scans must be ex-
cluded to obtain a clean enough sample for a significant 
result. Do common artifacts such as motion really make a dif-
ference in large samples? If so, what should be done about it? 

Defining motion is deceivingly simple at the core, but it 
has been surprisingly difficult for researchers to reach con-
sensus over the threshold of acceptable motion that can be 
tolerated within an MRI study. Moreover, it has become ap-
parent that motion artifacts in neuroimaging research cannot 
be ignored.3 Both structural and functional imaging domains 
are affected by motion artifacts; studies have highlighted that 
results obtained with the original sample compared with a 
clean, quality-controlled subset of the data yield significantly 
different effect sizes and even different neuroanatomical 
substrates for interpretation. Recently, an editorial by 
Weinberger and Radulescu4 brought this issue to the atten-
tion of researchers in psychiatry, challenging the common 
interpretation of findings derived from case–control MRI 
studies as altered “neurobiology” in patients compared with 

controls. Instead, the authors urged the field to more crit
ically and carefully acknowledge MRI-derived confounds, 
such as head motion, that may be clouding key findings in 
the literature.

In 2002, Blumenthal and colleagues5 were among the first 
to report a significant negative association between grey mat-
ter brain volumes and severity of motion artifact. This find-
ing is of particular importance in the study of pediatric popu-
lations and neurodevelopmental disorders, given children’s 
tendency to be more restless and, in turn, exhibit more move-
ment in the scanner. This realization has rebounded in the lit-
erature as researchers attempt to disentangle and reconcile 
the disparate structural trajectories associated with normal 
brain development — a critical concept that requires consoli-
dation if we are to broach the topic of abnormal brain trajec-
tories in psychiatric disorders. Nearly a decade ago, Shaw 
and colleagues6 conducted a seminal study on the cortical 
thickness trajectories underlying normal development in a 
sample ranging from 3.5 to 33 years of age and found pre-
dominantly nonlinear associations between cortical thickness 
and age, with notable peaks within the first decade of life. 
However, the age window leading up to these peaks of corti-
cal development encompasses an age group (i.e., 5–10 yr) 
where children have been shown to exhibit the most move-
ment in the MRI scanner.7 These confounds of movement 
provide a feasible explanation for the challenge in replicating 
these findings subsequently in independent samples.8–12 
Ducharme and colleagues13 addressed such inconsistencies 
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Psychiatry is at a crossroads when choosing final samples for analysis of neuroimaging data. Many patient populations exhibit signifi-
cantly increased motion in the scanner compared with healthy controls, suggesting that more patients would need to be excluded to 
obtain a clean sample. However, this need is often overshadowed by the extensive amount of time and effort required to recruit these 
valuable and uncommon samples. This commentary sheds light on the impact of motion on imaging studies, drawing examples from 
psychiatric patient samples to better understand how head motion can confound interpretation of clinically oriented questions. We 
discuss the impact of even subtle motion artifacts on the interpretation of results as well as how different levels of stringency in quality 
control can affect findings within nearly identical samples. We also summarize recent initiatives toward harmonization of quality-control 
procedures as well as tools to prospectively and retrospectively correct for motion artifacts.
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using a sample with a similar age range as that in the study 
by Shaw and colleagues,6 but with the additional component 
of three levels of quality control: none, standard and strin-
gent. With increasing stringency of quality control (i.e., re-
moval of more scans with motion), the reported nonlinear 
cortical thickness associations with age disappeared; instead, 
predominantly linear associations across most of the brain 
remained. Characterization of neurodevelopmental trajecto-
ries of white matter have also been of great interest and are 
similarly likely to be significantly influenced by motion. A 
recent investigation by Roalf and colleagues14 confirmed this 
sentiment, showing that significant correlations between 
commonly reported diffusion metrics (i.e., fractional anisot-
ropy and mean diffusivity) and age are weakened with in-
creased motion estimates.

These examples are convincing evidence that motion arti-
facts have a significant impact on structural imaging results, 
but why? As a simple point for comparison, motion in an 
MRI is akin to motion in any image taken with a camera: the 
higher degree of motion present, the more blurred and fuzzy 
the image will be. The basic physics underlying MRI data ac-
quisition add another layer of complexity to the effects of 
motion or head displacement in a resulting image. When a 
patient moves in the scanner, it is the spatial frequencies of 
the MRI, or k-space, that are perturbed. The errors intro-
duced give rise to motion artifacts that are not localized, but 
propagate throughout the image3,15 (e.g., ghosting, ringing, 
blurring). The signal derived from functional MRI (fMRI) can 
also be greatly perturbed by motion; two detailed reports by 
Power and colleagues16,17 describe the complex and variable 
manner by which different types of motion can impact fMRI 
acquisitions and increase the proportion of spurious correla-
tions across the brain. In both structural and functional im
aging, these artifacts have a downstream impact on all 
image-derived metrics, such as cortical thickness, regional 
volumes, or connectivity estimates. Further, what may be 
more disconcerting are the effects that even subtle motion 
may have on image quality and subsequent interpretation of 
commonly used outcome measures, such as cortical thick-
ness.18 This is particularly true for scans acquired with ultra-
high field MRI (i.e., 7 T and above), where longer acquisition 
times and increased magnetic field strengths confer increased 
sensitivity to motion.3 The work of Alexander-Bloch and col-
leagues18 emphasized the idea that although our pipelines 
may have progressed to be able to handle just about any-
thing, they do not necessarily bypass the subtle effects of 
“micromotion” or biased movements that ultimately may dif-
ferentiate clinical populations from healthy individuals.

Different levels of stringency in quality control may also 
yield drastically different results pertaining to clinical ques-
tions. A telling example comes from the autism literature, 
using the openly available Autism Brain Imaging Data Ex-
change (ABIDE; http://fcon_1000.projects.nitrc.org/indi/
abide) dataset, which is a widely used resource to probe 
questions regarding anatomical trajectories underlying 
autism-spectrum disorder (ASD), totalling approximately 
1100 scans. One investigation by Haar and colleagues19 found 
no difference between participants with ASD and typically 

developing controls, arguing that previous reports of signifi-
cant findings were likely spurious and not clinically meaning-
ful. However, a recently published study by Khundrakpam 
and colleagues20 using this dataset painted a different picture, 
showing dynamic patterns of significantly thicker cortex in 
participants with ASD compared with controls across de
velopment. So what was the key ingredient separating these 
two studies? Khundrakpam and colleagues20 used a stringent 
quality-control process, excluding half of the available sam-
ple; specifically, they excluded about 34% of the sample be-
cause of poor-quality scans, which stands in stark contrast to 
the 4% of poor-quality scans excluded by Haar and col-
leagues.19 Given that cortical thinning is a well-replicated 
consequence of motion18 and that patients with ASD tend to 
exhibit more motion in the scanner,1 it is feasible that the 
greater degree of motion-affected scans retained in the first 
sample would have underestimated cortical thickness, par
ticularly within the ASD group, and masked the biologically 
meaningful signal uncovered by the latter study. The finding 
of increased thickness in ASD resonates closely with lessons 
from histology. For instance, postmortem studies have found 
increased brain volume, alongside disproportionate eleva-
tions in both grey and white matter, in individuals with ASD 
compared with controls,21,22 supporting the MRI-based find-
ings of Khundrakpam and colleagues.20

Cortical thinning and grey matter volume loss have been 
reported in many psychiatric disorders (for a relevant meta-
analysis, see Goodkind and colleagues23), although it is diffi-
cult to disentangle the degree to which grey matter reduc-
tions are due to the underlying neurobiology of the disorder 
itself or to motion. Yao and colleagues2 sought this answer in 
bipolar disorder and schizophrenia samples, finding that 
reduced surface area and cortical thickness do in fact charac-
terize these psychotic disorders, albeit effect sizes were atten-
uated when taking head motion into account. 

Attention-deficit/hyperactivity disorder (ADHD) poses a 
particularly interesting challenge in psychiatry, as some of 
the prominent clinical features characterizing this neuro
developmental disorder include motion-related symptoms. 
Two recent studies assessing functional connectivity in 
ADHD have used rigorous quality-control procedures to 
more confidently draw upon biologically relevant networks 
underlying the disorder.24,25 Mirroring findings in structural 
imaging, one of these studies also reported reduced effect 
sizes compared with those reported in previous literature on 
functional connectivity patterns in ADHD, which the authors 
largely attribute to their cleaner dataset.25 Of note, the study 
by Fair and colleagues24 demonstrated that correcting for mo-
tion can have clinical utility in predicting subtypes of ADHD 
(i.e., combined v. inattentive subtypes). Specifically, the auth
ors used three different models of motion correction in a ma-
chine learning algorithm to classify subgroups of patients 
with ADHD, finding a relatively high degree of accuracy (i.e., 
71%–77%) with two of these models.

One of the largest and most comprehensive investigations 
examining motion bias across clinical cohorts (i.e., ADHD, 
ASD and schizophrenia) and different post-processing soft-
ware was recently conducted by Pardoe and colleagues.1 This 
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study used resting-state fMRI acquisitions to inform the de-
gree of movement present in T1-weighted images and exam-
ined this quantitative metric of motion in the context of brain 
morphometry, namely cortical thickness, grey/white matter 
contrast and grey matter/subcortical volumes. As expected, 
motion estimates were higher in all clinical populations than 
in controls and for the extreme ends of the age distribution 
(i.e., < 20 yr and > 40 yr). Intriguingly, cortical thickness and 
measures of cortical contrast were more affected by motion 
than volumetry, although the latter was affected to a greater 
degree by the choice of segmentation method. This paints a 
rather intricate and complex picture of the various levels by 
which motion may impact neuroimaging analyses of clinical 
cohorts and underscores the importance of, at minimum, 
having a clear and consistent quality-assurance protocol to 
exclude scans visibly affected by motion artifacts. Further-
more, given the manner by which different pipelines may 
handle motion, it is equally important to study thoroughly 
the processed outputs — successful runs may not always be 
linked to trustworthy results.

Many of the examples discussed thus far have come from 
cross-sectional study designs. However, longitudinal neuro-
imaging studies are integral in capturing dynamic brain 
changes that underlie the clinical course of psychiatric illness. 
Notably, it has been shown previously that head motion 
shows some degree of test–retest reliability.26–30 Thus, for 
longitudinal studies, motion correction should be considered 
for all time points. It may also be the case that only a subset 
of longitudinal scans from a single participant are retained 
for analysis after completing quality control. Fortunately, sta-
tistical methods, such as multilevel modelling (i.e., mixed-
effects models, hierarchical linear models) are designed to 
handle missing data points. For a more complete description 
of these methods, see Singer and Willet.31

Guidelines to minimize and correct for head 
motion artifacts

In the sections that follow, we propose a quality-control 
workflow that can serve as a framework for both prospective 
and retrospective datasets. This workflow is depicted in 
Figure 1. In addition to psychiatric patient samples, it should 
be noted that the confounds of head motion in the scanner 
also exist in other fields of biomedical imaging, such as neur
ology. As such, we propose that this quality-control work-
flow can be readily generalized to other patient populations, 
such as patients with neurologic disorders characterized by 
motor symptoms.

Considerations for prospective datasets

Behavioural training
One of the simplest and arguably most effective techniques in 
minimizing head motion is to ensure the participant remains 
as still as possible within the MRI scanner. Sedation and gen-
eral anesthesia have been successful in minimizing motion, 
particularly within pediatric populations, but such methods 
introduce additional confounds and are not always feasible or 

desirable in most research studies.32–34 Further, several studies 
have shown that it is possible to obtain successful scans 
within pediatric and psychiatric patient samples without the 
use of more invasive procedures.7,32,33,35–37 For instance, it is 
good practice to acclimatize the participant to the MRI setting 
using a mock scanner and to provide adequate training tai-
lored to the population of interest. If a mock scanner is not 
available, videos simulating the MRI environment may be 
used (e.g., http://vimeo.com/32255381).38 Acclimatizing chil-
dren to the scanner environment requires more personnel and 
preparation time than required for adolescents or adults. De-
tailed pediatric protocols, such as the inclusion of visual aids 
or allowing the child to view a movie during the scan, have 
been reported with high success rates.7,39,40 Neurofeedback 
paradigms have also been explored, where real-time feedback 
is provided to participants on their patterns of movement in 
the scanner,41 although this technique has had limited returns 
thus far. In summary, incorporating pre-scan protocols with 
attention to participant compliance and behaviour during 
scan acquisition will enhance the likelihood of a successful 
scan. These points are highlighted in Figure 1, under the “be-
havioural training” portion of the quality-control workflow.

Technical and methodological considerations 
A clear study protocol is required before any scans are collected. 
The mantra of “quality over quantity” is an important consider-
ation when deciding upon a scanning protocol for a psychiatric 
neuroimaging study. Focusing on one or two modalities and 
optimizing their quality (e.g., by acquiring multiple structural 
imaging scans or functional imaging runs) may be a more effi-
cient use of scan time than acquiring images using many 
modalities at suboptimal quality. Minimizing motion during 
scan acquisition may also require technical intervention. In re-
cent years, various research groups have worked diligently 
toward developing and improving imaging protocols to correct 
for motion as scans are being acquired in real time. These new 
techniques hold promise in significantly reducing the propor-
tion of scans that might otherwise need to be excluded owing to 
motion confounds. For instance, prospective motion correction 
(PROMO) has been proposed to counter the effects of inevitable 
participant movement in a proactive manner.15,42,43 The PROMO 
framework acts in real time during the acquisition of a scan, 
where motion can be detected through maintenance of a fixed 
coordinate system in relation to the participant’s position within 
the scanner, and images are automatically rescanned if signifi-
cant motion artifact is sensed. This procedure has been shown to 
drastically reduce the caveats associated with motion in chil-
dren, and intuitively is expected to hold similar benefits for clin-
ical populations. Framewise integrated real-time MRI monitor-
ing (FIRMM) has also been developed recently to quantify 
degree of motion from frame to frame as the data are being 
acquired, allowing MRI technicians and researchers on site to 
actively monitor head movement accurately and proactively.44 
Similarly, measures of head position and orientation while scan-
ning have been used to improve the quality of images acquired 
using positron emission tomography (PET).45 These points can 
be found in the “technical/methodological” portion of the 
quality-control workflow in Figure 1.
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Fig. 1: Proposed quality control workflow for MRI data sets, both prospective and retrospective. Note: this figure is designed as a simplified 
guide and is not a comprehensive workflow for all imaging modalities and clinical populations. DTI = diffusion tensor imaging; fMRI = func-
tional MRI; QC = quality control.
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Considerations for retrospective datasets

The previous section introduced practical suggestions for pro-
spective data collection. A natural question that follows is what 
solutions exist to handle motion artifacts within the abundance 
of clinical neuroimaging data that have already been amassed? 
Having a quantitative measure of motion — a variable that 
could be used as a means to better match patient and control 
samples — could be beneficial. We provide some suggestions 
in Figure 1 that can be applied to raw imaging data to help 
mitigate the effects of motion artifacts on retrospective datasets.

Correcting for motion after image acquisition
Motion estimates from functional imaging can be used to in-
form analysis of T1-weighted structural scans,18,46 although 
caution should be exercised when using a proxy measure of 
motion from another imaging modality. Motion during one 
acquisition does not necessitate motion during another, even 
if both acquisitions are collected within the same session. In 
the realms of diffusion imaging, a total motion index (TMI) 
has been defined based on several proxies for motion, in-
cluding calculations of translation, rotation and signal drop-
out, to obtain a collective “score” of motion.47 The TMI can 
then be used as a regressor in the comparison of group dif-
ferences. Scores of modality-specific toolboxes and work-
flows have also been developed to help manage the effects of 
motion on image quality, for application to structural T1-
weighted images,46,48 diffusion-weighted imaging,49–53 
resting-state54–58 and task-based fMRI,59 positron emission 
tomography45,60 and arterial spin labelling.61,62

Choosing MRI scans for analysis
We have argued the idea that a “clean” dataset, with mini-
mal motion impact, will yield a more biologically valid find-
ing. However, a clear consensus on data cleaning standards 
has not yet emerged, despite worthy efforts in that direc-
tion.63–65 This is largely attributable to the fact that defining 
inclusion/exclusion criteria of an MRI scan rests largely 
upon the research question at hand and on the imaging mo-
dality. Standards in fMRI may be more explicit on this point; 
for instance, Power and colleagues17 proposed a widely cited 
method of “scrubbing” fMRI data to remove frames with a 
high degree of motion and significant amplitude changes in 
the blood oxygen level–dependent (BOLD) signal. Alterna-
tives to handle different types of motion-related variance in 
fMRI acquisitions have been described recently by Caballero-
Gaudes and Reynolds.66 Image-quality metrics can also be 
derived automatically (e.g., signal-to-noise and contrast-to-
noise ratios), which provides a quantitative metric that can 
allow researchers to quickly pinpoint “outliers” that should 
be flagged (see the “raw image quality control” section of 
Fig. 1).67–69 This can be particularly useful when carrying out 
quality control of large imaging datasets. The critical point is 
that all quality-control procedures, either on raw images or 
derived measurements, must be completed prior to any sta-
tistical analysis across study participants. There is now an 
increased sensitivity to the perils of “data fishing,” or post 
hoc analysis (p-hacking), where final published samples are 

chosen based on the desired result. The field is responding 
to these issues and, for some journals, preregistration of 
studies and proposed methods are mandatory.63,70 It is likely 
that these initiatives will resonate quickly in the publication 
sphere. As alluded to earlier, recent initiatives to standardize 
and consolidate best practices for data analysis and sharing 
include recommendations for how to handle motion in 
neuroimaging (http://www.humanbrainmapping.org/
COBIDASreport)65 and active participation in hackathons64 
to reach a consensus on these pressing issues. Finally, many 
researchers with open datasets are beginning to publish 
quality-control procedures pertinent to their studies and are 
encouraging users to follow similar standards; examples in-
clude the Human Connectome Project71 and UK Biobank72 
(see the “raw image quality control” section of Fig. 1). The 
availability of these large, open datasets will also enable re-
searchers to replicate results and approach the “ground 
truth” for many questions that still plague the field regard-
ing brain development and alterations in psychiatric disor-
ders. A recent example can be found in the work of Mills 
and colleauges,73 where four independent datasets from 
three different countries were used to examine trajectories of 
brain development from childhood to early adulthood, find-
ing high replicability across samples. Such replication studies 
are highly encouraged in the field of psychiatry, especially 
as more samples of psychiatric patients are being placed in 
the public domain (e.g., ABIDE,74,75 ADHD-200 [http://
fcon_1000.projects.nitrc.org/indi/adhd200/],76 the Bipolar-
Schizophrenia Network on Intermediate Phenotypes,77,78 and 
SchizConnect [http://schizconnect.org/]79).

Conclusion

The quantification of motion to be accounted for when ana-
lyzing data is certainly attractive, compared with mere exclu-
sion of scans, in the analysis of retrospective data. However, 
sometimes a bad scan is just a bad scan, and it may be worth-
while to exercise the art of “letting go” in severe cases. 
Neuroimaging technology is developing quickly, and it is 
reasonable to expect that better algorithms and solutions for 
handling the blurred edges in our scans will be coming our 
way. Until then, do not shy away from data cleaning; the re-
wards gained in validity are worth the loss of a few scans.
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